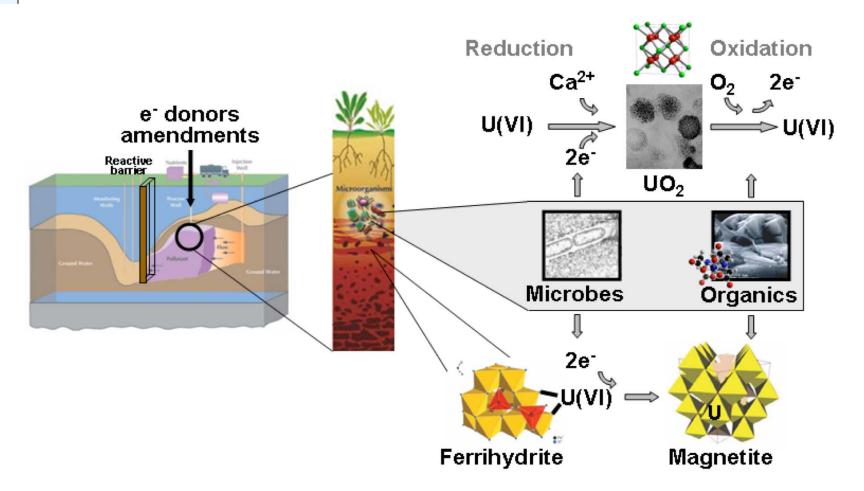


SSRL Environmental Remediation Science Program

3rd Annual DOE-ERSP PI Meeting Lansdowne, VA, April 9, 2008

Molecular-Scale Processes



ERSP Mission Context

The problem...

- 2/3rds of DOE sites have uranium subsurface contamination
- > 1 trillion gallons of contaminated ground water
- Pu contamination problematic at Hanford, LANL, INL, ORNL, NTS

Natural and stimulated bioreduction – First order questions...

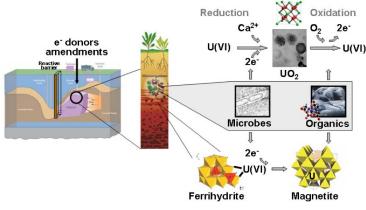
- Thermodynamic identity, properties of biogenic UO₂, PuO₂
- Improve the stability, yield, rate of biogenic UO₂ production

Natural and stimulated attenuation of U, Pu by Fe oxides – Questions...

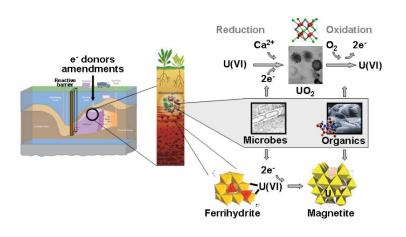
- Structures of natural ferrihydrite, and ion incorporation mechanisms
- Fate of metals during ferrihydrite reductive transformations
- How to stimulate incorporation of contaminants into Fe oxides

Pathways to site remediation and closure – First order questions...

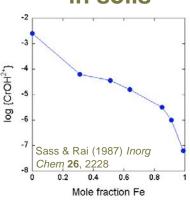
- Characterize site-specific geochemical processes, contaminant speciation
- Optimize, implement, and monitor remediation technologies


OBJECTIVES: to contribute enduring knowledge of key biogeochemical processes governing the subsurface behavior of priority contaminants. Emphasis on solid phases and solid-solute interactions.

IMPACT: Enhanced bioremediation of subsurface U and Pu, accelerated clean-up and closure of contaminated sites at savings to US taxpayers, increased public and regulatory acceptance of pathways to closure.


Collaborators

John Bargar (SSRL) Rizlan Bernier-Latmani (EPFL) Gordon Brown, Jr. (Stanford) David Clark (LANL) Los Alamos Jim Davis (USGS) SUSGS Peter Eng (U Chicago) | THE UNIVERSITY OF CHICAGO Scott Fendorf (Stanford) (1) Chris Fuller (USGS) **ZUSGS** Licente les d'Aussignes une les charges qu'elle le la charge qu'elle le la charge qu'elle l'accept le la charge qu'elle la charge qu'elle l'accept le la char Dan Giammar (WUStL) Washington Apurva Mehta (SSRL) Eric Pierce (PNNL) Paul Reimus (LANL) Lynne Soderholm (ANL) Argonne Dawn Wellman (PNNL) Rolls Northeon (PNNL) Peter Nico (LBL) Ken Kemner (ANL) Argonne



Emphasis: structure ← reactivity of complex natural solids

Fe oxides in soils

Fe incorporation & CrOOH solubility

Roles of environmental solids

- Sorptive agents
- Contaminant sources
- Oxidants/reductants
- Long-term sinks for contaminant attenuation

Focus: biogenic UO₂, PuO₂, Fe-oxides

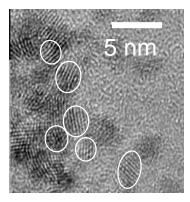
Structure/composition affect reactivity

- Structure and composition are variable
 - solid solution of foreign ions can enhance stability
 - lower solubility, oxidation/dissolution rates
 - requires structural incorporation
 - aging

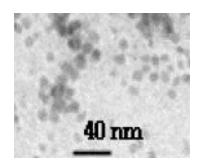
Prediction and manipulation of material properties in the field requires knowledge of structure and composition.

Interfacial structure is important

Biogenic UO₂, PuO₂, ferrihydrite: *nanoparticulate*


Large fraction of atoms at surfaces

Surface energy can become significant in comparison to bulk energy

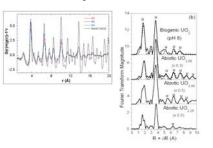

Surface structure mediates:

- adsorption of cations
- incorporation of ions, e.g., U, Ca²⁺ in nanoparticles
- electron transfer mechanisms
- dissolution mechanisms

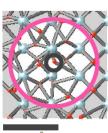
Corrosion occurs at surfaces

Biogenic UO₂

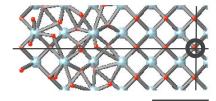
Ferrihydrite



Local/intermediate range structure: *EXAFS, XPDF*

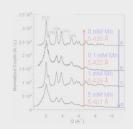


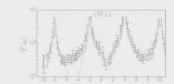
Nano-scale


HR-TEM, SAXS

structure:

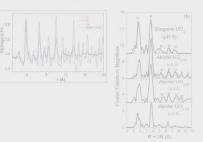
Structural defects
Structural environment
around dopants

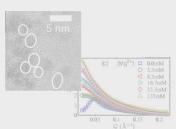


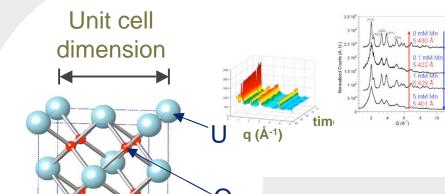

5 Å

Structure at nanoparticle terminations

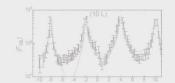
Long-range structure: *SR-PD*






Local/intermediate range structure: *EXAFS, XPDF*

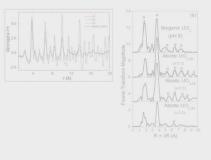
Nano-scale structure: HR-TEM, SAXS

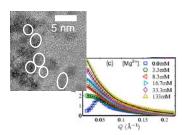

Long-range structure: *SR-PD*

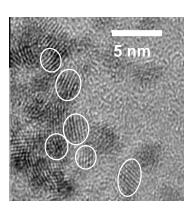
Lattice strain

Foreign ion incorporation

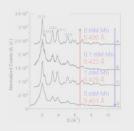
Rates of mineral transformations

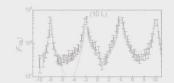






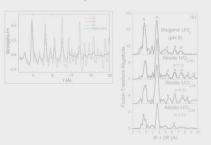
Local/intermediate range structure: *EXAFS, XPDF*

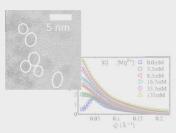

Nano-scale structure: HR-TEM, SAXS

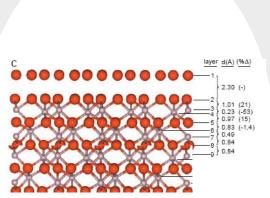


Size, shape, structural defects

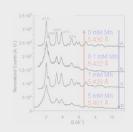
Long-range structure: *SR-PD*

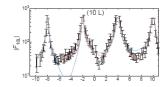






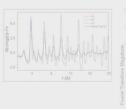
Local/intermediate range structure: *EXAFS, XPDF*

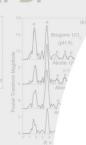

Nano-scale structure: HR-TEM, SAXS

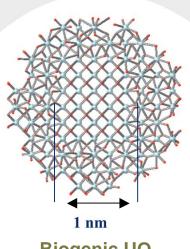


Atom & water positions Corrosion products

Long-range structure: *SR-PD*

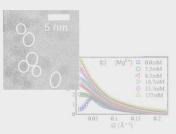






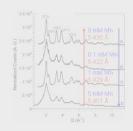
Dramatically clearer picture of structure and sequestration mechanisms

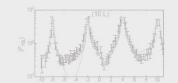
Local/intermediate range structure: *EXAFS, XPDF*





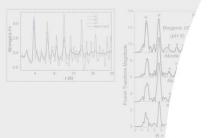
Biogenic UO₂ Schofield *et al.*, in review

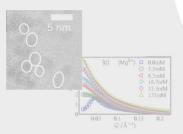

Nano-scale structure: HR-TEM, SAXS

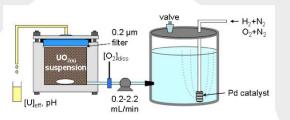


Michel et al., Science (2007) 316, 1726

Long-range structure: *SR-PD*

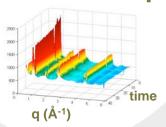


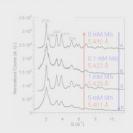


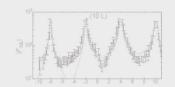

Correlate with reactivity

Local/intermediate range structure: *EXAFS, XPDF*

Nano-scale structure: HR-TEM, SAXS

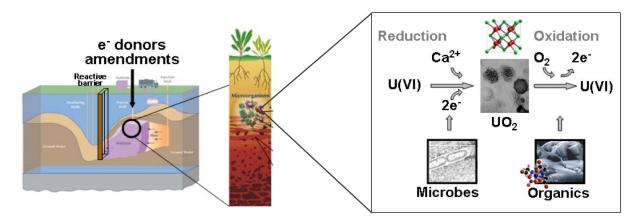



Reactivity:


Solubility
Sorptive capacity
Redox kinetics
Dissolution kinetics
Mineral transformations
Microcosm and columns

Structure ↔ Property Relationships

Long-range structure: *SR-PD*


Subtask 1: Molecular-scale structure, dynamics, and environmental stability of biogenic UO₂

(Bargar, Bernier-Latmani, Giammar, Clark, Eng, Soderholm)

Hypotheses:

Module 1: How do foreign solutes moderate biogenic UO₂ reactivity?

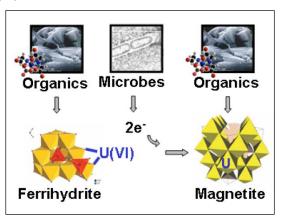
- (I) Incorporation mechanisms of groundwater cations ↔ stability.
- (II) Ability of corrosion coatings to passivate/stabilize nanoparticles (Ca²⁺, SiO₄⁴⁻).
- (III) Effect on meter-scale behavior of U.

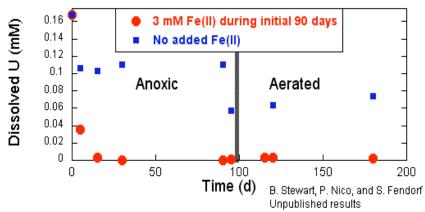
Module 2: Structure/reactivity of UO₂-water interfaces, corrosion coatings.

- (I) Molecular-scale structure of UO₂-water interfaces.
- (II) Role of hyperstoichiometry on surface reactivity at molecular scale.
- (III) Sorption/passivation of UO₂ by Ca²⁺ and SiO₄⁴⁻.

Module 3: How do proteins moderate UO₂ nucleation and growth?

- (I) Do proteins bind to biogenic UO₂, limiting or arresting crystal growth?
- (II) Does protein binding alter susceptibility to re-oxidation?


Subtask 2: Molecular-scale structure, dynamics, and U binding mechanisms of natural Fe oxides


(Brown, Fendorf, Bargar)

Questions and Hypotheses:

Module 1: Ferrihydrite structure and reactivity.

- (I) Structure of natural FHY? Incorporation of ions ↔ structure, reactivity?
- (II) Role of tetrahedral Fe³⁺?

Module 2: U attenuation via Fe reduction and ferrihydrite transformation.

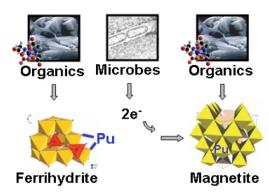
- (I) Transformation products, rates, processes.
- (II) U incorporation: mechanisms, rate/extent.

Module 3: Surface reactivity of Fe oxides.

What factors control the relative sorptive capacities of natural Fe oxides?

Module 4: Role of microbes and NOM on U sorption and reduction

How do biofilms moderate reaction of metal ions with natural Fe oxides?



Subtask 3: Molecular mechanisms of Pubinding by environmental solids

(Boukhalfa, Bargar)

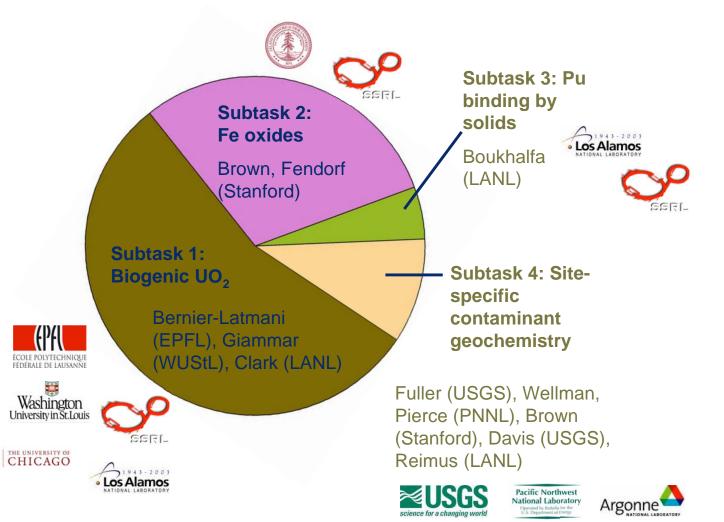
- (I) Structure/reactivity of biogenic PuO₂
- (II) Speciation of Pu in Fe oxides during redox cycling
- (III) Mechanisms of Pu adsorption on biogenic Mn-, Fe-oxides

Further details will be provided in LANL-SFA talk that follows

Subtask 4: Site characterization, remediation, and repository performance assessment

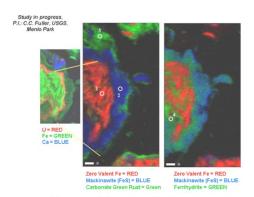
- (I) Processes and longevity of permeable reactive barriers for groundwater U remediation at Fry Canyon, Utah (C.C. Fuller, USGS)
- (II) Polyphosphate treatment of the Hanford 300 Area deep vadose and capillary fringe uranium contamination (D. Wellman and E. Pierce, PNNL)
- (III) Uranium fate and transport in sediments at Yucca mountain (P. Reimus)
- (IV) Uranium transport, dissolution, and desorption processes in the Hanford vadose zone (G. E. Brown, Jr., Stanford University)
- (V) In-situ bioremediation of a uranium-contaminated aquifer at the Rifle site (J.A. Davis, USGS)

New collaborations are anticipated over time.



The Project

Los Alamos



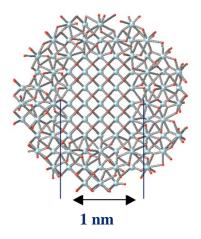
BER-ERSD user support program.

- 7/2004 9/2008, Project number 1024605,
- Objectives: facilitate access and utilization of SR-based techniques for BER ERSD-funded and associated research projects.

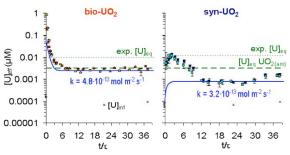
Highlights:

- ERSP research increased by more than 100% each year between FY 05 07, indicating success of project.
- 24 ERSD-funded projects, 1,500 8-hour shifts, 36 publications (FY 05-07).
- Supported: XAS, μ-XAS, SR-PD.
- Developed in-situ and time-resolved SR-PD capabillity for users
- Designed, implemented, commissioned, and supported a world-class hard x-ray microprobe for ERSD research.
- FY 2007 microprobe ERSD use increased 195% over 06 (first two user years).
- Developed five new data acquisition/ analysis software packages.
- Conducted 4 user education workshops.





UO₂ structure/reactivity project

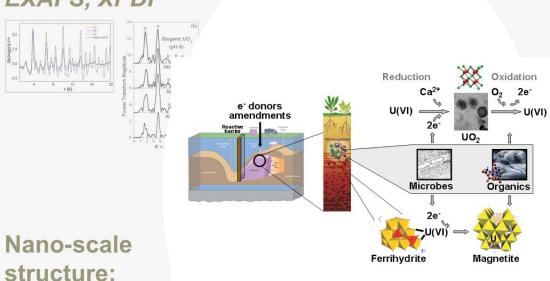

- 4/2006 9/2008, Project number 1027869,
- Objectives: characterize the structural chemistry and reactivity of biogenic UO₂, including solubility, dissolution kinetics, and catalytic oxidation by biogenic Mn(IV) oxides.

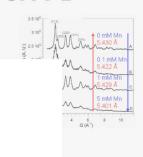
Highlights:

- Biogenic UO₂ found to be stoichiometric UO₂ and to be unstrained, suggesting that interfacial free energy is relatively small. Particles were found to have a highly ordered core of ca 1 nm diam, surrounded by a locally contracted outer zone.
- Solubility *similar to that of bulk synthetic stoichiometric UO*_{2,00} (reducing conditions).
- Carbonate increases dissolution rate even at anoxic conditions.
- Mn oxidizing bacteria catalytically accelerate bio-UO₂ oxidation.
- Mn²⁺ is structurally incorporated, increases stability against oxidation.
- Lays the foundation for the proposed project

Structure of biogenic UO₂.

Dissolution of biogenic UO₂ under reducing conditions, pH 7.




Molecular-scale ↔ remediation & closure

Local/intermediate range structure: *EXAFS, XPDF*

HR-TEM, SAXS

Long-range structure: *SR-PD*

ture:

